
Unified Compositional Formal Methods:
Exact Separation Logic and the Gillian Platform for

Correctness and Incorrectness Reasoning
Andreas Lööw

Imperial College London, UK
Daniele Nantes Sobrinho
Imperial College London, UK

Sacha-Élie Ayoun
Imperial College London, UK

Nat Karmios
Imperial College London, UK

Seung Hoon Park
Imperial College London, UK

Petar Maksimović
Imperial College London, UK
Runtime Verification Inc., USA

Philippa Gardner
Imperial College London, UK

1 Introduction
Our recent work has focussed on unified compositional for-
mal methods, meaning formalisms and tools that support
both over-approximate (OX) compositional reasoning about
program correctness (that is, verification) and under-approxi-
mate (UX) compositional reasoning about program incor-
rectness (that is, true bug-finding).

In the area of program logics, we have introduced a unified
compositional program logic, exact separation logic [6] (ESL),
which unifies traditional OX separation logic (SL) [10, 13] and
the more recent UX incorrectness separation logic (ISL) [5, 9,
12]. In the area of automated and semi-automated program
analysis tools, we have developed a formalism for unified
compositional symbolic execution and used this formalism to
guide the development of a new unified version of the pro-
gram analysis platform Gillian [1, 7]—this work is currently
under review. Gillian previously only supported OX analyses;
in its new version, we have added support for UX reasoning.

2 Unified Compositional Program Logics:
Exact Separation Logic

In our work on ESL, we provide a semantics and proof system
for exact separation logic quadruples of the form(

x = 𝑥 ★ 𝑃
)
𝑓 (x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
where 𝑃 is a pre-condition,𝑄ok a success post-condition, and
𝑄err an error post-condition. Whereas SL quadruples{

x = 𝑥 ★ 𝑃
}
𝑓 (x)

{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
are only guaranteed to capture an over-approximation of the
function behaviour (making them incompatible with true
bug-finding), and ISL quadruples[

x = 𝑥 ★ 𝑃
]
𝑓 (x)

[
ok : 𝑄ok

] [
err : 𝑄err

]
only guarantee to capture an under-approximation of said
behaviour (making them incompatible with verification), ESL
quadruples capture the exact function behaviour in the sense
that they neither over-approximate or under-approximate

it, making them compatible with both verification and true
bug-finding. By definition, the following relationship holds
between these three types of quadruples:(

x = 𝑥 ★ 𝑃
)
𝑓 (x)

(
ok : 𝑄ok

) (
err : 𝑄err

)
⇐⇒{

x = 𝑥 ★ 𝑃
}
𝑓 (x)

{
𝑜𝑘 : 𝑄ok

} {
𝑒𝑟𝑟 : 𝑄err

}
∧[

x = 𝑥 ★ 𝑃
]
𝑓 (x)

[
ok : 𝑄ok

] [
err : 𝑄err

]
One use case of ESL is for library developers who would

like to specify their (e.g., data-structure) libraries in such a
way that these specifications are useful both in verification-
based and testing-based application development. Before
ESL, providing such function specifications required two
separate proofs, one written in SL and another in ISL. These
two proofs, as they would in effect be exact, would be almost
identical and would result in duplicated work, as no OX- or
UX-specific shortcuts could be taken. Importantly, applica-
tion developers using an ESL-specified library would not be
restricted to exact reasoning: for example, if they were only
interested in verification only, they could use the provided
ESL quadruples as if they were SL quadruples (as all valid
ESL quadruples are also valid SL quadruples).

Abstraction. Perhaps surprisingly, despite ESL quadru-
ples capturing exact function behaviour, they still allow for
abstraction: e.g., the following quadruple for the list-length
function of a singly-linked list is provable using ESL:(

x = 𝑥 ★ list(𝑥, 𝑛)
)

LLen(x)(
ok : list(𝑥, 𝑛) ★ ret = 𝑛

) (
err : False

)
It should however be noted that abstraction in UX logics,
such as ISL and ESL, as we explore in our work on ESL, due
to the inherent limitations of UX reasoning, cannot be used
as freely as in OX logics.

Function call rule for ISL and ESL. Another contribu-
tion of the work on ESL is that we provide and prove sound,
for the first time, a function call rule compatible with UX



Lööw et al.

compositional program logics, including ISL and ESL. To do
so, we differentiate between external and internal function
specifications, which gives us a mechanism to forget infor-
mation about function-local variables at function boundaries.
This is required since in UX reasoning, which features only
backward consequence, it is not possible to lose any infor-
mation, unlike in OX reasoning, where this can be easily
accomplished using forward consequence.

3 Unified Compositional Symbolic
Execution and Unified Gillian

Since its inception, Gillian has supported both compositional
OX verification and compositional OX bug-finding. In its new
unified version, the different analyses hosted by Gillian can
now be run in the mode most appropriate for each analysis:
e.g., true bug-finding with bi-abduction can be carried out
in UX mode and verification can be carried out in OX mode.
In summary, unified Gillian can now perform the whole-
program symbolic testing of CBMC [4], the OX verification of
VeriFast [2], and the UX true bug-finding of Meta’s Pulse [5].

Unified compositional symbolic execution. Our formal
development reaches beyond Gillian: we have introduced a
new unified formalism for the consume-produce symbolic
execution engine paradigm, a paradigm followed by multi-
ple state-of-the-art OX symbolic execution engines [2, 8],
including Gillian. At a high level, a consume-produce en-
gine is based on two functions consume and produce, which,
respectively, given an SL assertion, adds and removes the
corresponding symbolic state to and from the current sym-
bolic state. The two functions are used for implementing the
compositional reasoning features of the engine, such as using
function specifications for symbolically executing function
calls and folding/unfolding of user-defined predicates.
Our unified formalism pinpoints the difference between

OX and UX reasoning in the consume-produce paradigm
down to the consume function, which is allowed to drop
paths in UX reasoning, but not in OX reasoning.

We have proven that our engine formalism is both OX- and
UX-sound. Moreover, we introduce an axiomatic interface
for the consume and produce functions, specifying proper-
ties for the two functions that ensure that they fit into the
engine and its soundness result. This interface modularises
our soundness proof and decouples the consume and pro-
duce function implementations from the rest of the engine.
In particular, we show that the full engine is sound if the
associated consume and produce functions satisfy our in-
terface, and separately provide example implementations of
consume and produce which provably satisfy this interface.

The axiomatic interface also enables the function call rule
of the engine to use OX, UX, and exact function specifications
(quadruples), proved both inside and outside of the engine.
For example, the engine can reason about the example library

discussed in the previous section, which comes with exact
specifications established using ESL.

Unified Gillian. As our formalism is based on the con-
sume-produce paradigm already implemented by Gillian, and
as we have identified the differences between OX and UX
engines in this paradigm to be small, porting Gillian from an
OX-only tool to a unified tool was relatively straightforward,
and took approximately two weeks of work.
One of the main selling points of Gillian is its support

for multiple programming languages, enabled by by Gillian
being parametric on the programming language andmemory
model under analysis. Today, Gillian has been instantiated to
C and JavaScript, with CHERI-C [11] and Rust instantiations
in development. The instantiation process for unified Gillian
requires is of the instantiation developers to ensure both OX
and UX properties of the instantiation components (such as
memory-model specific implementations of the consume and
produce functions) to ensure OX and UX soundness of the
full engine. This is analogous to instantiation for previous
Gillian versions, where only OX properties were required.

Lastly, we are also in the process of developing a debugger
GUI for Gillian [3] compatible with both OX and UX analyses.

References
[1] José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and

Philippa Gardner. 2020. Gillian, Part I: A Multi-language Platform for
Symbolic Execution. In Programming Language Design and Implemen-
tation. https://doi.org/10.1145/3385412.3386014

[2] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A Powerful, Sound,
Predictable, Fast Verifier for C and Java. In NASA Formal Methods
Symposium. https://doi.org/10.1007/978-3-642-20398-5_4

[3] Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. 2023. Sym-
bolic Debugging with Gillian. In International Workshop on Future
Debugging Techniques. https://doi.org/10.1145/3605155.3605861

[4] Daniel Kroening and Michael Tautschnig. 2014. CBMC – C Bounded
Model Checker. In Tools and Algorithms for the Construction and
Analysis of Systems. https://doi.org/10.1007/978-3-642-54862-8_26

[5] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer,
and Peter W. O’Hearn. 2022. Finding Real Bugs in Big Programs
with Incorrectness Logic. Proceedings of the ACM on Programming
Languages 6, OOPSLA1 (2022). https://doi.org/10.1145/3527325

[6] Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Suther-
land, and Philippa Gardner. 2023. Exact Separation Logic. In European
Conference on Object-Oriented Programming. https://doi.org/10.4230/
LIPIcs.ECOOP.2023.19

[7] Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and
Philippa Gardner. 2021. Gillian, Part II: Real-World Verification for
JavaScript and C. In Computer Aided Verification. https://doi.org/10.
1007/978-3-030-81688-9_38

[8] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016.
Viper: A Verification Infrastructure for Permission-Based Reasoning.
In Verification, Model Checking, and Abstract Interpretation. https:
//doi.org/10.1007/978-3-662-49122-5_2

[9] Peter W. O’Hearn. 2019. Incorrectness Logic. Proceedings of the ACM
on Programming Languages 4, POPL (2019). https://doi.org/10.1145/
3371078

[10] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local
Reasoning about Programs that Alter Data Structures. In Computer

https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3605155.3605861
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3527325
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078


Unified Compositional Formal Methods

Science Logic. https://doi.org/10.1007/3-540-44802-0_1
[11] Seung Hoon Park, Rekha Pai, and Tom Melham. 2023. A Formal

CHERI-C Semantics for Verification. In Tools and Algorithms for the
Construction and Analysis of Systems. https://doi.org/10.1007/978-3-
031-30823-9_28

[12] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter
O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence

of Bugs: Incorrectness Separation Logic. InComputer Aided Verification.
https://doi.org/10.1007/978-3-030-53291-8_14

[13] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In Logic in Computer Science. https://doi.org/10.1109/
LICS.2002.1029817

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-031-30823-9_28
https://doi.org/10.1007/978-3-031-30823-9_28
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817

	1 Introduction
	2 Unified Compositional Program Logics: Exact Separation Logic
	3 Unified Compositional Symbolic Execution and Unified Gillian
	References

